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Abstract

In this paper, vector norm inequalities that provides upper bounds for the Lipschitz quantity
∥f (T )x− f (V )x∥ for power series f (z) =

∑∞
n=0 anz

n, bounded linear operators T, V on the
Hilbert space H and vectors x ∈ H are established. Applications in relation to Hermite-
Hadamard type inequalities and examples for elementary functions of interest are given as
well.
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1 Introduction

Associated to a power series f (z) =
∑∞

n=0 anz
n we have naturally another power series with

coefficients being the absolute values of those of the original series, namely, fa (z) :=
∑∞

n=0 |an| zn.
It is well known that this two power series have the same radius of convergence. Observe that we
trivially have fa = f if all coefficients an ≥ 0.

We notice that if

f (z) =

∞∑
n=1

(−1)
n

n
zn = ln

1

1 + z
, z ∈ D (0, 1) ; (1.1)

g (z) =
∞∑

n=0

(−1)
n

(2n)!
z2n = cos z, z ∈ C;

h (z) =
∞∑

n=0

(−1)
n

(2n+ 1)!
z2n+1 = sin z, z ∈ C;

l (z) =
∞∑

n=0

(−1)
n
zn =

1

1 + z
, z ∈ D (0, 1) ;

where D (0, 1) is the open disk centered in 0 and of radius 1, then the corresponding functions
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22 W.-S. Cheung, S.S. Dragomir

constructed by the use of the absolute values of the coefficients are

fa (z) =

∞∑
n=1

1

n!
zn = ln

1

1− z
, z ∈ D (0, 1) ; (1.2)

ga (z) =
∞∑

n=0

1

(2n)!
z2n = cosh z, z ∈ C;

ha (z) =
∞∑

n=0

1

(2n+ 1)!
z2n+1 = sinh z, z ∈ C;

la (z) =
∞∑

n=0

zn =
1

1− z
, z ∈ D (0, 1) .

Other important examples of functions as power series representations with nonnegative coeffi-
cients are:

exp (z) =

∞∑
n=0

1

n!
zn, z ∈ C; (1.3)

1

2
ln

(
1 + z

1− z

)
=

∞∑
n=1

1

2n− 1
z2n−1, z ∈ D (0, 1) ;

sin−1 (z) =
∞∑

n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1, z ∈ D (0, 1) ;

tanh−1 (z) =
∞∑

n=1

1

2n− 1
z2n−1, z ∈ D (0, 1) ;

2F1 (α, β, γ, z) =

∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0,

z ∈ D (0, 1) ;

where Γ is Gamma function.
Let B (H) be the Banach algebra of bounded linear operators on a separable complex Hilbert

spaceH. The absolute value of an operator A is the positive operator |A| defined as |A| := (A∗A)
1/2

.
It is known [3] that in the infinite-dimensional case the map f (A) := |A| is not Lipschitz

continuous on B (H) with the usual operator norm, i.e. there is no constant L > 0 such that

∥|A| − |B|∥ ≤ L ∥A−B∥

for any A,B ∈ B (H) .
However, as shown by Farforovskaya in [11], [12] and Kato in [17], the following inequality holds

∥|A| − |B|∥ ≤ 2

π
∥A−B∥

(
2 + log

(
∥A∥+ ∥B∥
∥A−B∥

))
(1.4)

for any A,B ∈ B (H) with A ̸= B.
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Vector norm inequalities for power series 23

If the operator norm is replaced with Hilbert-Schmidt norm ∥C∥HS := (trC∗C)
1/2

of an operator
C, then the following inequality is true [1]

∥|A| − |B|∥HS ≤
√
2 ∥A−B∥HS (1.5)

for any A,B ∈ B (H) .
The coefficient

√
2 is best possible for a general A and B. If A and B are restricted to be

self-adjoint, then the best coefficient is 1.
It has been shown in [3] that, if A is an invertible operator, then for all operators B in a

neighborhood of A we have

∥|A| − |B|∥ ≤ a1 ∥A−B∥+ a2 ∥A−B∥2 +O
(
∥A−B∥3

)
, (1.6)

where
a1 =

∥∥A−1
∥∥ ∥A∥ and a2 =

∥∥A−1
∥∥+ ∥∥A−1

∥∥3 ∥A∥2 .
In [2] the author also obtained the following Lipschitz type inequality

∥f (A)− f (B)∥ ≤ f ′ (a) ∥A−B∥ (1.7)

where f is an operator monotone function on (0,∞) and A,B ≥ aIH > 0.
One of the central problems in perturbation theory is to find bounds for

∥f (A)− f (B)∥

in terms of ∥A−B∥ for different classes of measurable functions f for which the function of operator
can be defined. For some results on this topic, see [4], [13] and the references therein.

We recall the following result that provides a quasi-Lipschitzian condition for functions defined
by power series [9]:

Theorem 1. Let f (z) :=
∑∞

n=0 anz
n be a power series with complex coefficients and convergent

on the open disk D (0, R) , R > 0. If T, V ∈ B (H) are such that ∥T∥ , ∥V ∥ < R, then

∥f (T )− f (V )∥ ≤ f ′
a (max {∥T∥ , ∥V ∥}) ∥T − V ∥ . (1.8)

If ∥T∥ , ∥V ∥ ≤ M < R, then from (1.8) we have the simpler inequality

∥f (T )− f (V )∥ ≤ f ′
a (M) ∥T − V ∥ (1.9)

We define the absolute value of an operator A ∈ B (H) defined as |A| as the square root operator
of the positive operator A∗A. With this notation, we have:

Corollary 1. With the above assumptions for f , we have

∥f (T )− f (T ∗)∥ ≤ f ′
a (∥T∥) ∥T − T ∗∥ (1.10)

if T ∈ B (H) with ∥T∥ < R and∥∥∥f (|N∗|2
)
− f

(
|N |2

)∥∥∥ ≤ f ′
a

(
∥N∥2

)∥∥∥|N∗|2 − |N |2
∥∥∥ (1.11)

if N ∈ B (H) with ∥N∥2 < R.
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24 W.-S. Cheung, S.S. Dragomir

Remark 1. With the assumption of Theorem 1 we have

∥f (|T |)− f (|V |)∥ ≤ f ′
a (max {∥T∥ , ∥V ∥}) ∥|T | − |V |∥

provided ∥T∥ , ∥V ∥ < R.

Motivated by the above results, in this paper we establish some upper bounds for the vector
norms

∥f (T )x− f (V )x∥ ,
∥∥∥∥f (U + V

2

)
x−

∫ 1

0

f ((1− s)U + sV )xds

∥∥∥∥
and ∥∥∥∥f (U)x+ f (V )x

2
−
∫ 1

0

f ((1− s)U + tV )xds

∥∥∥∥
where x ∈ H, for various assumptions on the power series f (z) :=

∑∞
n=0 anz

n and the bounded
linear operators T, V ∈ B (H) . Applications for some elementary functions of interest are also
provided.

2 Vector Inequalities

The following result also holds:

Theorem 2. Let f (z) :=
∑∞

n=0 anz
n be a power series with complex coefficients and convergent

on the open disk D (0, R) , R > 0. If T, V ∈ B (H) are commutative and such that ∥T∥ , ∥V ∥ < R,
then

∥f (T )x− f (V )x∥ ≤ f ′
a (max {∥T∥ , ∥V ∥}) ∥Tx− V x∥ (2.1)

for any x ∈ H.

Proof. We show first that the following power inequality holds true for any n ∈ N

∥Tnx− V nx∥ ≤ n (max {∥T∥ , ∥V ∥})n−1 ∥Tx− V x∥ (2.2)

for any x ∈ H.
We prove this by induction. We observe that for n = 0 and n = 1 the inequality reduces to an

equality.
Assume now that (2.2) is true for k ∈ N, k ≥ 1 and let us prove it for k + 1.
Utilising the properties of the operator norm, we have∥∥T k+1x− V k+1x

∥∥ =
∥∥T k (T − V )x+

(
T k − V k

)
V x
∥∥

≤
∥∥T k (T − V )x

∥∥+ ∥∥(T k − V k
)
V x
∥∥ =: I

Since T and V are commutative, then T k − V k and V are commutative and

I =
∥∥T k (T − V )x

∥∥+ ∥∥V (T k − V k
)
x
∥∥ .
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Vector norm inequalities for power series 25

By the induction hypothesis we have

I ≤
∥∥T k

∥∥ ∥Tx− V x∥+ ∥V ∥
∥∥T kx− V kx

∥∥
≤ ∥T∥k ∥Tx− V x∥+ k (max {∥T∥ , ∥V ∥})k−1 ∥Tx− V x∥ ∥V ∥

≤ max
{
∥T∥k , ∥V ∥k

}
∥Tx− V x∥

+ k (max {∥T∥ , ∥V ∥})k−1 ∥Tx− V x∥max {∥T∥ , ∥V ∥}

= (max {∥T∥ , ∥V ∥})k ∥Tx− V x∥

+ k (max {∥T∥ , ∥V ∥})k ∥Tx− V x∥

= (k + 1) (max {∥T∥ , ∥V ∥})k ∥Tx− V x∥

for any x ∈ H and the inequality (2.2) is proved.
Now, for any m ≥ 1, by making use of the inequality (2.2) we have∥∥∥∥∥

m∑
n=0

anT
nx−

m∑
n=0

anV
nx

∥∥∥∥∥ ≤
m∑

n=0

|an| ∥Tnx− V nx∥ (2.3)

≤ ∥Tx− V x∥
m∑

n=0

n |an| (max {∥T∥ , ∥V ∥})n−1

for any x ∈ H.
Since the series

∑∞
n=0 anT

nx,
∑∞

n=0 anV
nx and

∑∞
n=0 n |an| (max {∥T∥ , ∥V ∥})n−1

are conver-
gent for any x ∈ H, then by letting m → ∞ in (2.3) we get the inequality (2.1).

Remark 2. If we assume that ∥T∥ , ∥V ∥ ≤ M < R, then from (2.1) we can get the simpler
inequality

∥f (T )x− f (V )x∥ ≤ f ′
a (M) ∥Tx− V x∥ (2.4)

for any x ∈ H.

Corollary 2. With the assumptions from Theorem 2 for f , we have

∥f (N)x− f (N∗)x∥ ≤ f ′
a (∥N∥) ∥Nx−N∗x∥ (2.5)

for any x ∈ H, if N ∈ B (H) is a normal operator with ∥N∥ < R.

Since N is normal, then N commutes with N∗ and by applying (2.1) for T = N and V = N∗

we get (2.5).
Now, if we take f (z) = exp z, z ∈ C, then we get from (2.1)

∥exp (T )x− exp (V )x∥ ≤ exp (max {∥T∥ , ∥V ∥}) ∥Tx− V x∥ (2.6)

for any x ∈ H and T, V ∈ B (H) commuting operators.
If we take f (z) = sinh z, z ∈ C and f (z) = sin z, z ∈ C, then we get from (2.1)

max {∥sinh (T )x− sinh (V )x∥ , ∥sin (T )x− sin (V )x∥} (2.7)

≤ cosh (max {∥T∥ , ∥V ∥}) ∥Tx− V x∥
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26 W.-S. Cheung, S.S. Dragomir

for any x ∈ H and T, V ∈ B (H) commuting operators.

If we consider the function f (z) = (1± z)
−1

, z ∈ D (0, 1) , then we get from (2.1)∥∥∥(1H ± T )
−1

x− (1H ± V )
−1

x
∥∥∥ ≤ 1

(1−max {∥T∥ , ∥V ∥})2
∥Tx− V x∥ (2.8)

for any x ∈ H and T, V ∈ B (H) commuting operators with ∥T∥ , ∥V ∥ < 1.
Now, if we drop the commutativity assumption for the operators involved, we can prove the

following result as well:

Theorem 3. Let f (z) :=
∑∞

n=0 anz
n be a power series with complex coefficients and convergent

on the open disk D (0, R) , R > 0. If T, V ∈ B (H) are such that ∥T∥ , ∥V ∥ < R, then

∥f (∥Tx∥)Tx− f (∥V x∥)V x∥ (2.9)

≤ [fa (max {∥Tx∥ , ∥V x∥}) + max {∥Tx∥ , ∥V x∥} f ′
a (max {∥Tx∥ , ∥V x∥})]

× ∥Tx− V x∥

for any x ∈ H, ∥x∥ ≤ 1.
If R = ∞, then the inequality (2.9) holds for any x ∈ H.

Proof. We show first that the following power inequality holds true for any n ∈ N and x ∈ H

∥∥Tx∥n Tx− ∥V x∥n V x∥ ≤ (n+ 1) (max {∥Tx∥ , ∥V x∥})n ∥Tx− V x∥ . (2.10)

For n = 0, the inequality becomes an equality.
Assume that n ≥ 1, then we have

∥∥Tx∥n Tx− ∥V x∥n V x∥ (2.11)

= ∥∥Tx∥n Tx− ∥Tx∥n V x+ ∥Tx∥n V x− ∥V x∥n V x∥
≤ ∥∥Tx∥n (Tx− V x)∥+ ∥(∥Tx∥n − ∥V x∥n)V x∥
= ∥Tx∥n ∥Tx− V x∥+ |∥Tx∥n − ∥V x∥n| ∥V x∥
≤ (max {∥Tx∥ , ∥V x∥})n ∥Tx− V x∥
+ |∥Tx∥n − ∥V x∥n|max {∥Tx∥ , ∥V x∥} .

On the other hand

|∥Tx∥n − ∥V x∥n| = |∥Tx∥ − ∥V x∥|
(
∥Tx∥n−1

+ ...+ ∥V x∥n−1
)

(2.12)

≤ n ∥Tx− V x∥ (max {∥Tx∥ , ∥V x∥})n−1
.

Using (2.11) and (2.12) we have

∥∥Tx∥n Tx− ∥V x∥n V x∥ ≤ (max {∥Tx∥ , ∥V x∥})n ∥Tx− V x∥
+ n ∥Tx− V x∥ (max {∥Tx∥ , ∥V x∥})n

= (n+ 1) (max {∥Tx∥ , ∥V x∥})n ∥Tx− V x∥
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Vector norm inequalities for power series 27

and the inequality (2.10) is proved.
Now, for any m ≥ 1, by making use of the inequality (2.10) we have∥∥∥∥∥

(
m∑

n=0

an ∥Tx∥n
)
Tx−

(
m∑

n=0

an ∥V x∥n
)
V x

∥∥∥∥∥ (2.13)

≤
m∑

n=0

|an| ∥∥Tx∥n Tx− ∥V x∥n V x∥

≤ ∥Tx− V x∥
m∑

n=0

(n+ 1) |an| (max {∥Tx∥ , ∥V x∥})n

= ∥Tx− V x∥

(
m∑

n=0

|an| (max {∥Tx∥ , ∥V x∥})n

+
m∑

n=0

n |an| (max {∥Tx∥ , ∥V x∥})n
)

= ∥Tx− V x∥

(
m∑

n=0

|an| (max {∥Tx∥ , ∥V x∥})n

+
m∑

n=1

n |an| (max {∥Tx∥ , ∥V x∥})n
)
.

Since ∥T∥ , ∥V ∥ < R and ∥x∥ ≤ 1, then the following series are convergent and

∞∑
n=0

an ∥Tx∥n = f (∥Tx∥) ,
∞∑

n=0

an ∥V x∥n = f (∥V x∥) ,

∞∑
n=0

|an| (max {∥Tx∥ , ∥V x∥})n = fa (max {∥Tx∥ , ∥V x∥})

and
∞∑

n=1

n |an| (max {∥Tx∥ , ∥V x∥})n = max {∥Tx∥ , ∥V x∥} f ′
a (max {∥Tx∥ , ∥V x∥}) ,

then by letting m → ∞ in (2.13) we deduce the desired result (2.9).
If R = ∞, then the above series are convergent for any x ∈ H.

Remark 3. A similar result may be proved if one assumes the slightly more general condition that
T, V ∈ B (H) and x ∈ H are such that ∥Tx∥ , ∥V x∥ < R.

By taking various elementary functions, one can get some examples similar to those above.
However, the details are omitted.
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28 W.-S. Cheung, S.S. Dragomir

3 Applications for Hermite-Hadamard Type Inequalities

The following result is well known in the Theory of Inequalities as the Hermite-Hadamard inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

2

for any convex function f : [a, b] → R.
The distance between the middle and the left term for Lipschitzian functions with the constant

L > 0 has been estimated in [7] to be∣∣∣∣∣ 1

b− a

∫ b

a

f (t) dt− f

(
a+ b

2

)∣∣∣∣∣ ≤ 1

4
L (b− a) (3.1)

while the distance between the right term and the middle term satisfies the inequality [21]∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1

4
L (b− a) . (3.2)

For other Hermite-Hadamard type inequalities, see [6], [8], [14], [15], [16], [18], [20], [21], [23],
[24], [25], [26] and [27].

In order to extend these results to functions of operators we need the following lemma that is
of interest in itself as well:

Lemma 1. Let f : C ⊂ B (H) → B (H) be a vector L-Lipschitzian function on the convex set C,
i.e. it satisfies

∥f (U)x− f (V )x∥ ≤ L ∥Ux− V x∥ for any U, V ∈ C and x ∈ H.

For U, V ∈ C and x ∈ H \ {0} , define the function φU,V,x : [0, 1] → H by

φU,V,x (t) :=
1

2

[
f

(
(1− t)U + t

U + V

2

)
x+ f

(
t
U + V

2
+ (1− t)V

)
x

]
=

1

2

[
f

((
1− t

2

)
U +

t

2
V

)
x+ f

(
t

2
U +

(
1− t

2

)
V

)
x

]
.

Then for any t1, t2 ∈ [0, 1] we have the inequality

∥φU,V,x (t2)− φU,V,x (t1)∥ ≤ 1

2
L ∥Ux− V x∥ |t2 − t1| , (3.3)

i.e., the function φU,V,x is Lipschitzian with the constant 1
2L ∥Ux− V x∥ .

In particular, we have the inequalities∥∥∥∥f (U + V

2

)
x− φU,V,x (t)

∥∥∥∥ ≤ 1

2
L ∥Ux− V x∥ (1− t) , (3.4)

∥∥∥∥f (U)x+ f (V )x

2
− φU,V,x (t)

∥∥∥∥ ≤ 1

2
L ∥Ux− V x∥ t (3.5)
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Vector norm inequalities for power series 29

and ∥∥∥∥12
[
f

(
3U + V

2

)
x+ f

(
U + 3V

2

)
x

]
− φU,V,x (t)

∥∥∥∥ (3.6)

≤ 1

2
L ∥Ux− V x∥

∣∣∣∣t− 1

2

∣∣∣∣
for any t ∈ [0, 1] .

Proof. We have

∥φU,V,x (t2)− φU,V,x (t1)∥

=
1

2

∥∥∥∥f ((1− t2)U + t2
U + V

2

)
x+ f

(
t2
U + V

2
+ (1− t2)V

)
x

−f

(
(1− t1)U + t1

U + V

2

)
x− f

(
t1
U + V

2
+ (1− t1)V

)
x

∥∥∥∥
≤ 1

2

∥∥∥∥f ((1− t2)U + t2
U + V

2

)
x− f

(
(1− t1)U + t1

U + V

2

)
x

∥∥∥∥
+

1

2

∥∥∥∥f (t2U + V

2
+ (1− t2)V

)
x− f

(
(1− t1)U + t1

U + V

2

)
x

∥∥∥∥
≤ 1

2
L

∥∥∥∥(1− t2)Ux+ t2
Ux+ V x

2
− (1− t1)Ux− t1

Ux+ V x

2

∥∥∥∥
+

1

2
L

∥∥∥∥t2Ux+ V x

2
+ (1− t2)V x− (1− t1)Ux− t1

Ux+ V x

2

∥∥∥∥
=

1

4
L ∥Ux− V x∥ |t2 − t1|+

1

4
L ∥Ux− V x∥ |t2 − t1| =

1

2
L ∥Ux− V x∥ |t2 − t1|

for any t1, t2 ∈ [0, 1] , which proves (3.3).
The rest is obvious.

We can prove now the following Hermite-Hadamard type inequalities for Lipschitzian functions
of operators.

Theorem 4. Let f : C ⊂ B (H) → B (H) be a vector L-Lipschitzian function on the convex set C.
Then we have the inequalities∥∥∥∥f (U + V

2

)
x−

∫ 1

0

f ((1− s)U + sV )xdt

∥∥∥∥ ≤ 1

4
L ∥Ux− V x∥ , (3.7)

∥∥∥∥f (U)x+ f (V )x

2
−
∫ 1

0

f ((1− s)U + tV )xds

∥∥∥∥ ≤ 1

4
L ∥Ux− V x∥ (3.8)

and ∥∥∥∥12
[
f

(
3U + V

2

)
x+ f

(
U + 3V

2

)
x

]
−
∫ 1

0

f ((1− s)U + sV )xds

∥∥∥∥ (3.9)

≤ 1

8
L ∥Ux− V x∥

Unauthenticated
Download Date | 2/27/18 1:17 PM



30 W.-S. Cheung, S.S. Dragomir

for any U, V ∈ C and x ∈ H.

Proof. First, observe that f : C ⊂ B (H) → B (H) is continuous in the norm topology of B (H) ,

therefore the integral
∫ 1

0
f ((1− t)U + tV ) dt exists for any U, V ∈ C.

Utilising the inequality (3.4) and the norm inequality for norm, we have∥∥∥∥f (U + V

2

)
x−

∫ 1

0

φU,V,x (t) dt

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥f (U + V

2

)
x− φU,V,x (t)

∥∥∥∥ dt (3.10)

≤ 1

2
L ∥Ux− V x∥

∫ 1

0

(1− t) dt

=
1

4
L ∥Ux− V x∥

for any U, V ∈ C and x ∈ H.
By the definition of φU,V we have∫ 1

0

φU,V,x (t) dt

=
1

2

[∫ 1

0

f

(
(1− t)U + t

U + V

2

)
xdt+

∫ 1

0

f

(
t
U + V

2
+ (1− t)V

)
xdt

]
.

Now, using the change of variable t = 2s we have

1

2

∫ 1

0

f

(
(1− t)U + t

U + V

2

)
xdt =

∫ 1/2

0

f ((1− s)U + sV )xds

and by the change of variable t = 1− v we have

1

2

∫ 1

0

f

(
t
U + V

2
+ (1− t)V

)
xdt =

1

2

∫ 1

0

f

(
(1− v)

U + V

2
+ vV

)
xdv.

Moreover, if we make the change of variable v = 2s− 1 we also have

1

2

∫ 1

0

f

(
(1− v)

U + V

2
+ vV

)
xdv =

∫ 1

1/2

f ((1− s)U + sV )xds.

Therefore ∫ 1

0

φU,V,x (t) dt =

∫ 1/2

0

f ((1− s)U + sV )xdt+

∫ 1

1/2

f ((1− s)U + sV )xds

=

∫ 1

0

f ((1− s)U + sV )xdt

and by (3.10) we deduce (3.7).
The other inequalities (3.8) and (3.9) follow in a similar way and the details are omitted.
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Corollary 3. Let f (z) :=
∑∞

n=0 anz
n be a power series with complex coefficients and convergent

on the open diskD (0, R) , R > 0. If U, V ∈ B (H) are commuting and such that ∥U∥ , ∥V ∥ ≤ M < R,
then ∥∥∥∥f (U + V

2

)
x−

∫ 1

0

f ((1− s)U + sV )xds

∥∥∥∥ ≤ 1

4
f ′
a (M) ∥Ux− V x∥ , (3.11)

∥∥∥∥f (U)x+ f (V )x

2
−
∫ 1

0

f ((1− s)U + tV )xds

∥∥∥∥ ≤ 1

4
f ′
a (M) ∥Ux− V x∥ (3.12)

and ∥∥∥∥12
[
f

(
3U + V

2

)
x+ f

(
U + 3V

2

)
x

]
−
∫ 1

0

f ((1− s)U + sV )xds

∥∥∥∥ (3.13)

≤ 1

8
f ′
a (M) ∥Ux− V x∥ ,

for any x ∈ H.

Proof. Since U, V ∈ B (H) are commuting and such that ∥U∥ , ∥V ∥ ≤ M, then for any x ∈ H we
have by (2.4) that

∥f (T )x− f (V )x∥ ≤ f ′
a (M) ∥Tx− V x∥ .

Since the operators U+V
2 and (1− s)U + sV, s ∈ [0, 1] are commutative, then∥∥∥∥f (U + V

2

)
x− f ((1− s)U + sV )x

∥∥∥∥ ≤ f ′
a (M) ∥Tx− V x∥ ,

and by the argument in Theorem 4 we get (3.11).
The rest can be proved in a similar way and we omit the details.

It is known that if U and V are commuting operators, then the operator exponential function
exp : B (H) → B (H) given by

exp (T ) :=
∞∑

n=0

1

n!
Tn

satisfies the property

exp (U) exp (V ) = exp (V ) exp (U) = exp (U + V ) .

Also, if A is invertible and a, b ∈ R with a < b then∫ b

a

exp (tA) dt = A−1 [exp (bA)− exp (aA)] .

Proposition 1. Let U and V be commuting operators with ∥U∥ , ∥V ∥ ≤ M and such that V − U
is invertible. Then we have the inequalities∥∥∥∥exp(U + V

2

)
x− (V − U)

−1
[exp (V )− exp (U)]x

∥∥∥∥ (3.14)

≤ 1

4
∥Ux− V x∥ exp (M) ,
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∥∥∥∥exp (U)x+ exp (V )x

2
− (V − U)

−1
[exp (V )− exp (U)]x

∥∥∥∥ (3.15)

≤ 1

4
∥Ux− V x∥ exp (M)

and∥∥∥∥12
[
exp

(
3U + V

2

)
x+ exp

(
U + 3V

2

)
x

]
− (V − U)

−1
[exp (V )− exp (U)]x

∥∥∥
≤ 1

8
∥Ux− V x∥ exp (M) . (3.16)

Proof. Follows by Corollary 3 on observing that∫ 1

0

exp ((1− s)U + sV ) ds =

∫ 1

0

exp (s (V − U)) exp (U) ds

=

(∫ 1

0

exp (s (V − U)) ds

)
exp (U)

= (V − U)
−1

[exp (V − U)− I] exp (U)

= (V − U)
−1

[exp (V )− exp (U)] .
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[26] G. Zabandan, A. Bodaghi and A. Kılıçman, The Hermite-Hadamard inequality for r-convex
functions. J. Inequal. Appl. 2012, 2012:215, 8 pp.

[27] C.-J. Zhao, W.-S. Cheung and X.-Y. Li, On the Hermite-Hadamard type inequalities. J. Inequal.
Appl. 2013, 2013:228.

Unauthenticated
Download Date | 2/27/18 1:17 PM


	Vector norm inequalities for power series of operators in Hilbert spaces  W.-S. Cheung1, S.S. Dragomir2,3
	Introduction
	Vector Inequalities
	Applications for Hermite-Hadamard Type Inequalities




